4.2) Expanding $(a + bx)^n$

Worked	exampl	le

mial Find first four terms in the binomial

Find first four terms in the binomial expansion of $\sqrt{2+x}$ State the values of x for which the expansion is valid.

expansion of $\sqrt{4+x}$ State the values of x for which the expansion is valid.

$$2 + \frac{1}{4}x - \frac{1}{64}x^2 + \frac{1}{512}x^3 - \cdots$$
Valid for $|x| < 4$

Work	ed	e>	kamį	ole

			C / (G.)	٠ ٦ . ٠
Find first fo	ur tei	rms in	the bir	omi

expansion of
$$\frac{1}{(3+2x)^4}$$

State the values of x for which the expansion is valid.

le Your turn

nial Find first four terms in the binomial

expansion of $\frac{1}{(2+3x)^2}$ State the values of x for which the expansion is valid.

$$\frac{1}{4} - \frac{3}{4}x + \frac{27}{16}x^2 - \frac{27}{8}x^3 + \cdots$$
Valid for $|x| < \frac{2}{3}$

Worked example

Find first three terms in ascending powers of x of the series expansion of $\frac{3x+4}{\sqrt{2-5x}}$ State the values of *x* for which the expansion is valid.

Find first three terms in ascending powers of x of the series expansion of $\frac{3x-4}{\sqrt{5+2x}}$ State the values of *x* for which the expansion is valid.

Your turn

$$-\frac{4\sqrt{5}}{5} + \frac{19\sqrt{5}}{25}x + \frac{9\sqrt{5}}{25}x^{2}$$
Valid for $|x| < \frac{5}{2}$

Worked example	Your turn
Use the binomial expansion of $\sqrt{8+9x}$ up to the x^2 term to estimate $\sqrt{11}$, giving your answer as a single fraction	Use the binomial expansion of $\sqrt{9+8x}$ up to the x^2 term to estimate $\sqrt{11}$, giving your answer as a single fraction
	179 54

Find the series expansion, in ascending powers of x, up to and including the x^2 term for:

$$\frac{6}{2-3x} - \frac{4}{5+2x}$$

Your turn

Find the series expansion, in ascending powers of x, up to and including the x^2 term for:

$$\frac{6}{2+5x} - \frac{4}{3-2x}$$

$$\frac{5}{3} - \frac{151}{18}x + \frac{1961}{108}x^2$$

Your	tur
roui	tui
loui	cui

Find the percentage error in approximating $\sqrt{53}$ using $x=\frac{1}{9}$ in the series expansion of $\sqrt{6-x}$ up to and including the x^2 term.

Find the percentage error in approximating $\sqrt{35}$ using $x=\frac{1}{9}$ in the series expansion of $\sqrt{4-x}$ up to and including the x^2 term.

0.000138%

State when the binomial expansion is valid:

State when the binomial expansion is valid: $(25-2x)^{-\frac{3}{4}}$

 $|x| < \frac{25}{2}$

 $(9+2x)^{\frac{1}{2}}$

 $(2+x)^{-3}$

 $(8-x)^{\frac{1}{3}}$

 $(5-2x)^{-3}$

 $(16+3x)^{-\frac{1}{2}}$