4.2) Expanding $(a+b x)^{n}$

## Your turn

Find first four terms in the binomial expansion of $\sqrt{2+x}$
State the values of $x$ for which the expansion is valid.

Find first four terms in the binomial expansion of $\sqrt{4+x}$
State the values of $x$ for which the expansion is valid.

$$
\begin{gathered}
2+\frac{1}{4} x-\frac{1}{64} x^{2}+\frac{1}{512} x^{3}-\cdots \\
\text { Valid for }|x|<4
\end{gathered}
$$

## Your turn

Find first four terms in the binomial expansion of $\frac{1}{(3+2 x)^{4}}$
State the values of $x$ for which the expansion is valid.

Find first four terms in the binomial expansion of $\frac{1}{(2+3 x)^{2}}$
State the values of $x$ for which the expansion is valid.

$$
\begin{gathered}
\frac{1}{4}-\frac{3}{4} x+\frac{27}{16} x^{2}-\frac{27}{8} x^{3}+\cdots \\
\text { Valid for }|x|<\frac{2}{3}
\end{gathered}
$$

## Your turn

Find first three terms in ascending powers of $x$ of the series expansion of $\frac{3 x+4}{\sqrt{2-5 x}}$ State the values of $x$ for which the expansion is valid.

Find first three terms in ascending powers of $x$ of the series expansion of $\frac{3 x-4}{\sqrt{5+2 x}}$
State the values of $x$ for which the expansion is valid.

$$
\begin{gathered}
-\frac{4 \sqrt{5}}{5}+\frac{19 \sqrt{5}}{25} x+\frac{9 \sqrt{5}}{25} x^{2} \\
\text { Valid for }|x|<\frac{5}{2}
\end{gathered}
$$

Use the binomial expansion of $\sqrt{8+9 x}$ up to the $x^{2}$ term to estimate $\sqrt{11}$, giving your answer as a single fraction

Use the binomial expansion of $\sqrt{9+8 x}$ up to the $x^{2}$ term to estimate $\sqrt{11}$, giving your answer as a single fraction
$\frac{179}{54}$

## Your turn

Find the series expansion, in ascending powers of $x$, up to and including the $x^{2}$ term for:

$$
\frac{6}{2-3 x}-\frac{4}{5+2 x}
$$

Find the series expansion, in ascending powers of $x$, up to and including the $x^{2}$ term for:

$$
\begin{gathered}
\frac{6}{2+5 x}-\frac{4}{3-2 x} \\
\frac{5}{3}-\frac{151}{18} x+\frac{1961}{108} x^{2}
\end{gathered}
$$

Find the percentage error in approximating $\sqrt{53}$ using $x=\frac{1}{9}$ in the series expansion of $\sqrt{6-x}$ up to and including the $x^{2}$ term.

Find the percentage error in approximating $\sqrt{35}$ using $x=\frac{1}{9}$ in the series expansion of $\sqrt{4-x}$ up to and including the $x^{2}$ term.
0.000138\%

State when the binomial expansion is valid:
$(2+x)^{-3}$

$$
(9+2 x)^{\frac{1}{2}}
$$

$$
(8-x)^{\frac{1}{3}}
$$

$$
(5-2 x)^{-3}
$$

$$
(16+3 x)^{-\frac{1}{2}}
$$

State when the binomial expansion is valid:

$$
\begin{gathered}
(25-2 x)^{-\frac{3}{4}} \\
|x|<\frac{25}{2}
\end{gathered}
$$

